

Versio

Written

n 1.0

 by:

Nick Po
James D
Nick Wi
Tom Hir
Robert

C

ope
Dowling
illiams
rst
Newman

Cel
User

lul

r Ma

ate
nual

e

l

25--04-20077

 I

Null Name Exception CS407 - Group Project: Cellulate User Manual

Table of Contents

1 Introduction .. 1

2 System Requirements .. 2

2.1 Libraries .. 2
2.1.1 wxWidgets .. 2
2.1.2 Boost ... 2
2.1.3 Berkeley DB (bdb) ... 2

2.2 Node Requirements ... 2
2.3 Hardware Requirements ... 2

3 Getting Started .. 4

3.1 Installing from Binaries .. 4
3.2 Building from Source ... 4

3.2.1 Getting the Source ... 4
3.2.2 Building the Source .. 4

4 Running Your First Simulation ... 5

4.1 Starting Cellulate and Cellunet .. 5
4.1.1 Finding Cellulate's IP Address .. 6

4.1.1.1 Windows ... 6
4.1.1.2 Mac OS X .. 6
4.1.1.3 Linux .. 7

4.1.2 Starting Cellunet ... 7
4.2 Setting Up Your Simulation ... 8

4.2.1 Entering a Name and Description ... 8
4.2.2 Setting Sizes & Dimensions ... 8
4.2.3 Creating Variables ... 9
4.2.4 Creating Cell Colouring .. 10
4.2.5 Defining the Cell Script .. 11
4.2.6 Defining Initial Cell States .. 13
4.2.7 Running the Simulation ... 16

5 Using Cellulate ... 19

5.1 Editing a Simulation ... 19
5.1.1 The 'Simulation Properties' Pane ... 19
5.1.2 The 'Appearance' Pane .. 20
5.1.3 The 'Script' Pane ... 22
5.1.4 The 'Initial Cell States' Pane ... 23
5.1.5 Editing a Variable ... 24
5.1.6 Editing a Colouring Rule ... 24

5.2 Starting a Simulation .. 25
5.3 Replaying an Existing simulation .. 26
5.4 Changing Application Preferences ... 26
5.5 Viewing a Simulation .. 27
5.6 Controlling the Renderer ... 28

5.6.1 Controlling the Camera .. 28
5.6.2 When Defining States .. 28
5.6.3 When Viewing Simulations ... 28

5.7 The Node (Cellunet) ... 29
5.7.1 Altering the Build Configuration .. 29

5.8 Managing Connected Nodes ... 29

6 Scripts ... 31

6.1 What is a Script? .. 31
6.2 Using Script Functions .. 31
6.3 Writing a Script - An Example .. 31
6.4 Advanced Use - Maths Functions .. 33

 II

Null Name Exception CS407 - Group Project: Cellulate User Manual

6.5 Non-recommended Use ... 33
6.6 Error Feedback .. 33
6.7 FAQ - Common Problems .. 34

7 Troubleshooting .. 35

7.1 The node can't connect to the client .. 35
7.2 2D Cellular Automata don't work properly .. 35
7.3 Cells are not coloured properly ... 35
7.4 I can't run my simulation .. 35
7.5 Cells do not seem to have the right values ... 35
7.6 I get permission errors when trying to run a script .. 35
7.7 The simulation replay does not relate to the simulation .. 36
7.8 All the cells are gray ... 36
7.9 Help! I'm lost and I don't know what I'm seeing! .. 36

8 Function Reference .. 37

8.1 Basic Functions .. 37
8.2 Neighbours ... 37

8.2.1 Other .. 37

1

CS407 - Group Project: Cellulate User Manual

Null Name Exception

1 Introduction

Congratulations on your download of Cellulate! Treated with care, respect and love, your copy of
Cellulate will serve you well for many years.

Cellulate is a cellular automata modeller. It has the ability to run 1-, 2- or 3-dimensional cellular
automata with any number of cell variables across numerous iterations powered by a user-defined script.
It is possible to split the calculations over several machines by running a processing node on every
machine you want to participate in the simulation.

The script determining the future state of cells can be easily edited using a subset of C++ (which is fully
documented in sections 6 and 8). This script is then dynamically compiled on each of the processing
nodes, increasing the speed of the simulation.

Cellulate was initially designed to simulate cell and bacterial growth but has grown into a fully-featured
general purpose cellular automata modeller. It is capable of running any simulation for which a cellular
automata is appropriate; the most common example of one, Conway's Game of Life, is provided in both
2D and 3D (see the `examples` directory).

Cellulate is designed on run on any platform that supports the wxWidgets windowing library. It has been
successfully tested on OS X, Windows XP and Vista, and various distributions of Linux.

The latest version of Cellulate can always be found at http://cellulate.sf.net/.

2

CS407 - Group Project: Cellulate User Manual

Null Name Exception

2 System Requirements

2.1 Libraries

To successfully compile Cellulate, you will require the following libraries to be compiled and available,
together with the development header files. If you are installing a binary, you don't need to worry about
this.

2.1.1 wxWidgets

wxWidgets is a cross-platform windowing library. Cellulate requires wxWidgets version 2.6 or later
(newer versions should also work, but 2.4 and below definitely don't work).

wxWidgets can be downloaded from http://wxwidgets.org/. If you're running Windows, you might have
luck with wxPack, which can be downloaded from http://wxpack.sf.net/.

You will also need the Styled Text Control (stc) installed. This is distributed with wxWidgets, and can
be built by using the build scripts found in [Your Build Directory]/contrib/src/stc in Linux/OS X,
or [Your Build Directory]/contrib/build/stc on Windows.

The `wx-config` application called by the configure script should automatically reference all
appropriate headers and library files for wxWidgets.

2.1.2 Boost

Boost is a set of portable libraries allowing features such as threading and regular expressions to be
used reliably in cross-platform applications. Cellulate requires version 1.33 or later. It can be found at
http://boost.org/.

Boost needs to be compiled and installed (or staged). Cellulate uses the boost_iostreams, boost_regex
and boost_thread libraries. Note that the boost_iostreams library needs to be build with bzip2 support.

2.1.3 Berkeley DB (bdb)

Berkeley DB (bdb) is a simple yet very fast database library, used by Cellulate to store previous
simulation runs. Cellulate requires version 4.2 or later. It can be downloaded from
http://www.oracle.com/database/berkeley-db/index.html.

Cellulate requires the C++ library (db_cxx) to work properly.

2.2 Node Requirements

To work successfully, the node - the small application you need to run on each of the slave computers -
needs to have access to a C++ compiler.

To maximise speed, the cell processing script you enter is compiled when you start the simulation, for
which a C++ compiler on the node machine is required. You can use any compiler that is capable of
generating libraries, but the use of programs other than g++, MinGW or the Visual Studio compiler will
probably require the editing of the build configuration file, and aren't tested.

By default, on Linux or OS X, the GNU C++ Compiler (g++) is used. The g++ compiler is available with
most Linux distributions, although you may need to install it through the package manager. On OS X,
you will need to install the Developer Tools (available on the OS X installation CD).

On Windows, the use of MinGW is recommended. MinGW can be downloaded from
http://www.mingw.org/ and the path will probably have to be edited in the build configuration file (see
below).

2.3 Hardware Requirements

Running the simulation is expensive in terms of CPU, memory, and disk usage. Ideally, you'll want as
much of each as possible. Larger simulations, or simulations with more variables, will require more
resources and time to run properly.

3

CS407 - Group Project: Cellulate User Manual

Null Name Exception

At an absolute minimum, you will need around 96MB of memory free on each node, 128MB of memory
free on the machine co-ordinating the simulation, and enough space on the co-ordinating machine to
store the generated data. As a guide, a 100x100x100 simulation running for 1 iteration with a single
boolean variable would require around 1MB of storage space.

It is strongly recommended that every machine has as much memory as possible. It is also worth
bearing in mind the simulation speed will be limited by the slowest machine, since every machine will
need to be at the same stage before one iteration of the simulation can be completed (although
Cellulate will try and balance the workload when it can).

4

CS407 - Group Project: Cellulate User Manual

Null Name Exception

3 Getting Started

This section describes how to get Cellulate up and running. It assumes the libraries mentioned in the
'Requirements' section have been installed properly.

3.1 Installing from Binaries

In most cases, you can simply open the binary installer and follow the instructions. You do not need to
install the libraries if you're installing this way. See the accompanying readme file for more detailed
instructions.

3.2 Building from Source

If you want to compile Cellulate from source, this is the section for you. If you have opted for the pre-
built binaries, skip this section.

3.2.1 Getting the Source

In most cases, you will want to download the most recent source tarball from the project site
(http://cellulate.sf.net/). The current (and potentially broken) source can be checked out from the
SourceForge subversion repository (SVN). The following command should check out the current version
of the source to a 'cellulate' directory:

svn co https://cellulate.svn.sourceforge.net/svnroot/cellulate/trunk cellulate

3.2.2 Building the Source

Change to the newly-created trunk directory. We now need to run the included configure script to set
Cellulate up for your machine. To do this, type in ‘./configure’. You may need to specify some of the
following options:

• --with-bdblib [PATH]: This is the path to the Berekely DB library files.
• --with-boostinc [PATH]: The path to Boost's include files.
• --with-boostlib [PATH]: The path to Boost's library files.
• --with-wx-config [PATH_TO_WX-CONFIG]: Path to the wx-config application.
• --prefix [PATH]: The prefix to install all the files to. This is useful if you want to run Cellulate as

a non-admin user; you can specify a path you can write to, and everything will be dumped there.

These should be the only options you need in the majority of cases. You can also use --help to get a
listing of all the options you can specify.

When the configuration has finished, run `make`, followed by `make install` as root to put everything
in the proper place.

5

CS407 - Group Project: Cellulate User Manual

Null Name Exception

4 Running Your First Simulation

This section talks you through running your first simulation. For this example, we will be implementing
the Game of Life in 2D, which is arguably the most famous example of a cellular automata.

4.1 Starting Cellulate and Cellunet

The first thing we will need to do is start Cellulate. Cellulate is the program responsible for editing the
simulation, managing the connected computers ('nodes'), and viewing the results. To start Cellulate
under Windows or OS X, just double-click the application icon. Under Linux, you will need to run it from
the command line; if it has been installed in a directory in your $PATH, you should just need to type in
`cellulate`.

You should be presented with the window below.

Figure 1 : Initial Cellulate window

At this point, it's probably a good idea to start at least one instance of Cellunet. Cellunet is the
command-line application that does the actual processing of the cellular automata. It's designed to be
run simultaneously on several machines, all of which connect to the original Cellulate application to
report their results.

6

CS407 - Group Project: Cellulate User Manual

Null Name Exception

4.1.1 Finding Cellulate's IP Address

The first thing you will need to know is the unique network address ('IP Address') of the computer
running Cellulate. The method of discovering it varies a bit depending on what OS you are using.

4.1.1.1 Windows

1. Go to the Start menu, Press Windows Key+R, type 'cmd' into the box that appears, and click

'OK'. You should be presented with a command console.
2. Type in `ipconfig /all`. You should get a list of properties; you are looking for the set of numbers

under 'IP Address'.

Figure 2 : Windows IP Address

4.1.1.2 Mac OS X

1. Go to the Apple menu, choose 'System Preferences...', click 'Network', and double-click on the

connection you will be using to network the computers together.
2. Click the 'TCP/IP' tab. Your IP address should be shown on this page.

Figure 3 : OS X IP address

7

CS407 - Group Project: Cellulate User Manual

Null Name Exception

4.1.1.3 Linux

1. Start a console, and type in '/sbin/ifconfig'.
2. Under the heading for the interface you use to network the computers together, your IP Address

should be shown after `inet`. You don't want the similar number shown after 'broadcast'; ignore
that.

Figure 4 : Linux IP address

4.1.2 Starting Cellunet

Armed with your Cellulate IP address, start a new console on a machine you want to use for
processing. This can be the same machine you're running Cellulate on, but for large simulations this is
a really bad idea, and so is discouraged. Type in the path to the Cellunet command (or drag it's icon to
the console window). Now, you will need to add some options to tell it which machine to connect to.

You can do this by typing ' -a [THE IP ADDRESS]' after the cellunet command you've typed in. The IP
address is the IP Address you discovered above; the address of the computer running the Cellulate
application.

Assuming everything goes okay, you should see something like the screenshot below. If you get errors
about 'Could not connect to server', check the IP address you entered is correct and the Cellulate is
still running on the first machine.

Figure 5 : Starting a celunet node

8

CS407 - Group Project: Cellulate User Manual

Null Name Exception

4.2 Setting Up Your Simulation

4.2.1 Entering a Name and Description

First things first: let's enter a name and description for our simulation. This is used to identify it and is
optional, but it can help differentiate between simulations.

Make sure the 'Simulation Properties' tab is selected. For this example, we've entered the name and
description shown below.

Figure 6 : The name and description of your simulation

4.2.2 Setting Sizes & Dimensions

Now, we need to define what dimensions the simulation should have. When doing this, it's important to
bear in mind that bigger simulations will result in longer processing time, and consume more memory
and disk space. It's also important to note that (right now) changing these values will cause the initial
cell states to be reset; any initial states you have defined will be deleted.

As we are simulating 2D life, we will enter these values as shown below. Note that we have set one
dimension to 1 as we want a 2D simulation. We have also turned off the Z wraparound. This governs
whether cells at one edge will affect cells on the opposite edge. Leaving this turned on will cause any
cell to be its own neighbour, and will cause unexpected results.

Figure 7 : Initial Rule Editor Window UI Design

We choose to let the simulation run for 50 iterations, and set the neighbourhood size to 1. The
neighbourhood size describes the number of cells that any particular cell can be affected by (or affect).
A neighbourhood size of 1 means that only the cells touching a given cell (including diagonals) can be
affected by it - 26 cells in total. A neighbourhood size of two would increase this to be the 124 closest
cells, and so on. Processing times and network traffic are affected by this.

9

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 8 : Iterations and neighbourhood size

4.2.3 Creating Variables

The next thing to do is to define some cell variables. Variables can be used to store information about
the current state of a cell; you may have a variable that represents how long a cell has been alive, or a
variable that represents the amount of food a cell has. You can change a variable when the simulation
runs using the script, and set an initial value for it before the simulation begins (more on that later).

As with the simulation size, adding, deleting or changing a variable will delete any initial states you
have defined.

Initially, you need to tell Cellulate what variables you will be using, as well as what type they will be. A
variable can be defined as a boolean, in which case the only values it can have are true or false, an
integer of varying sizes, or a floating point decimal number.

For the game of life, we will only need one variable, which will represent whether the cell is alive or
dead, which we will call 'cellalive'. To add it, first click on the plus icon below the list of variables:

Figure 9 : The ‘add variable’ button

You should see a dialog like the one below. Enter the name as 'cellalive' and change the type to
boolean since we will only need two states - 'true' to represent a living cell, or 'false' to represent a
dead cell.

10

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 10 : The variable editor

The different sizes of integer, as well as the boolean type, are provided so as to minimise the amount
of space the simulation will take up when finished. While you could, as an example, use a tiny integer
instead of a boolean for representing 'cellalive' in the Game of Life, it could increase the amount of
data generated by around 8 times!

4.2.4 Creating Cell Colouring

Now, we need to tell Cellulate how to colour the cells. We do this by defining specific colours for
specific values of cell variables. Any cells not explicitly assigned a colour will not be shown. In this
example, we will want living cells (cells whose 'cellalive' variable is exactly '1') to be shown in a nice
masculine pink colour, and non-living cells not to be shown.

Click the appearance tab along the top of the window, and you should be taken to a screen with a list
of colours. It should be empty right now. To add a colour, click the plus icon below it, and you will be
presented with a window like the one shown below.

Figure 11 : The colour editor window

Firstly, ensure 'cellalive' is selected in the pop-up box at the top. This tells Cellulate which variable this
colouring rule applies to. Next, we will need to choose whether we apply the colour to a single value of
this variable, or a range of values. As this is a boolean and can only have two values, the range option
is disabled, making the choice an easy one.

Next, we need to specify a value, which we will enter as '1' - this tells Cellulate to only apply this to
cells that have the value '1', and only '1'. We don't need to enter an end value, as we are not entering
a range.

Finally, we need to pick a colour. Click on the box next to the 'choose a colour...' label, and a colour
picker should appear. Choose a colour you like the look of.

If you had wanted to use a range - which you must do for a floating-point variable - you would also
need to specify an end value and an end colour in the same way. Cellulate would then gradient the
cells according to where they lay in the range. Cells closer to the beginning value would have a colour
similar to the starting colour you specify, cells closer to the end value would have a colour closer to the

11

CS407 - Group Project: Cellulate User Manual

Null Name Exception

end colour, and cells with values in the middle would be a blend of the two colours. If you want a range
to be the same colour, you will need to make the start and end colours the same.

Now we are done with this dialog, you can press 'OK' to have Cellulate add it to the list box. A new row
should appear, looking a little like:

Figure 12 : Initial Rule Editor Window UI Design

It's worth remembering that if two or more colouring rules match one cell, the top matching colour will
be the one that's used.

4.2.5 Defining the Cell Script

The cell script is one of the most important parts of your simulation. This script is used to update a
cell's state, and is called once for every cell, for every iteration. It is written using a subset of C++,
and is compiled on every node before the simulation runs.

To enter a script, click the 'Script' tab along the top of the main window. You should be presented with
a screen similar to the following:

12

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 13 : Script editor window

The script you need to enter to simulate the 2D Game of Life is shown below.

/* Game of Life - In Glorious 2D! */

/* See http://www.math.com/students/wonders/life/life.html for more info on

 the 2D Game of Life defined here. */

/* First thing we need to do is find the number of living cells our current

 cell has. We call the 'NumNeighbours' function to find out how many neighbouring

 cells have their 'cellalive' property set to true. The neighbourhood size - the

 number of cells this function will check - is defined on the first setup page. */

int numNeighbours NumNeighbours("cellalive",true);

 /* Using this information, we can now calculate the new cell states. */

13

CS407 - Group Project: Cellulate User Manual

Null Name Exception

/* If this cell has exactly 3 neighbours, we become alive. */

 if (numNeighbours == 3) {

 /* Set the 'cellalive' variable inside this cell to 'true'. */

 Set("cellalive",true);

/* If we have two neighbours, our state will not change. */

} else if (numNeighbours == 2) {

 /* Copy the entire cell as-is, effectively leaving it unchanged

 for the next iteration of the simulation.*/

 CopyCell();

/* Otherwise, the cell dies, due to loneliness or overcrowding. :-(*/

} else {

 /* Set the 'cellalive' property to false, causing the cell to die. */

 Set("cellalive",false);

}

There are several things you should be aware of when writing scripts:

• A script can only check the values of cells inside its neighbourhood. Cells outside this

neighbourhood will return an incorrect value.
• A change to the value of a variable inside a cell is only visible to surrounding cells when the

current iteration is over.
• C++ variables defined in the script (e.g. numNeighbours above) are lost when it has finished

executing after every cell. A cell cannot access a C++ variable defined while a previous cell was
executing; variables should be thought of as going out of scope when the end of the script is
reached.

• The use of the `new` or `malloc` keywords inside a script is not recommended. If you do use it,
be very, very sure there are no leaks at all. Even the smallest leak will result in an obscene
amount of memory being used.

When you are finished writing a script, you can press the 'Check Syntax...' button at the bottom of the
window. If a node is connected, the program will ask it to test the script you've written. Any errors it
encounters will be reported back to you.

For more information on writing scripts and the methods available to you, see the section on scripting
later in this manual.

4.2.6 Defining Initial Cell States

Now we need to define what value each variable will be on the first iteration. This will form the basis of
the states in the rest of the simulation; cell patterns and states in the next iterations will evolve from
this.

In this example, we will create a glider. This is a group of cells that doesn't change in size, but moves
slowly across the map by (appearing to) rearrange its cells. For more information on gliders and other
interesting shapes you can make in the Game of Life, see
http://www.math.com/students/wonders/life/life.html.

To create the glider, we will use the initial state editor; change to this using the 'Initial States' tab at
the top of the main window. You should see a panel like the one below.

14

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 14 : Initial states editor pane

This shows your current simulation, and will probably be empty. Notice the select plane; this is the
white grid overlaid on top of the simulation.

There are a few controls you will need to know at this point. Firstly, clicking and dragging with the left
mouse button will rotate the model shown inside; you may need to do this so you can see the cell you
want to edit. The scroll wheel (or the Page Up and Page Down keys) will zoom in and out. The right
mouse button will allow you to move the simulation.

To select a cell, double-click somewhere on the simulation. If there's a coloured and visible cell there, it
will be selected with a white box, and information about that cell will appear on the cell inspector. If
there is not a visible cell, the corresponding empty cell intersecting the point you click and the select
plane will be highlighted.

To create our glider, double-click on a empty cell on the grid. It should be highlighted in white, and the
inspector window (shown below) should update to list the variables defined in that cell. We need to

15

CS407 - Group Project: Cellulate User Manual

Null Name Exception

change the 'cellalive' value to true; that is, mark the cell as being alive. To do this, click on the drop-
down box next to 'cellalive' on the inspector, and choose 'true', changing the value of the variable.

Figure 15 : Variable inspector

Keep doing this until you have a shape that looks like the one below. This is the simplest example of a
glider in the game of life.

16

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 16 : Final cell layout

4.2.7 Running the Simulation

We are pretty much done setting up the simulation now. Save it (choose 'save' from the 'file' menu),
and we are ready to run. Choose 'Run Simulation...' from the 'Simulation' menu. The program will
check there is a node connected; if not, will prompt you to start one locally for testing purposes. You
should get a window that looks like the one below.

17

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 17 : Simulation run confirmation window

Check that everything's okay, especially the number of connected nodes, which should correspond to
the number of machines you are running cellunet on (one in this example). Then, choose where to
save the replay file to - you can do this with the folder button to the right of the 'Save to:' field. When
you've done this, click 'Save and Run', and Cellulate will send the script out to all connected nodes and
request they compile it. If something goes wrong, Cellulate will give you the errors the node reported
back to it, otherwise you should see a window like the one below.

Figure 18 : Simulation displaying window

18

CS407 - Group Project: Cellulate User Manual

Null Name Exception

This shows the result of the simulation process. The cells shown are those defined in the first state;
this is the initial state you defined in the editor window. To move to the next iteration of the
simulation, click the right arrow underneath the renderer display; this should move it to the next
iteration. You may notice the cells turn grey when you do this. This signifies the renderer is in the
process of redrawing those cells, and they should change colour soon. You will hopefully see that the
glider starts to 'move' diagonally across the grid.

The amount of the simulation that's been calculated is represented by the green line in the slider above
the buttons. The further towards the end it gets, the closer the calculation is to finishing. The handle
on the slider represents your position within the simulation, and you can drag this around to change
the frame you are looking at.

Manipulating the view shown by the renderer pane is similar to changing the view in the initial states
window. As with the initial states window, there is a floating inspector that shows the state of the
currently selected cell, which you can change by double-clicking on a cell in the window.

You can also display a clipping plane. This plane will hide all cells that are behind it, allowing you to
select cells in the middle of a group. This isn't really that useful in this example simulation, as in a 2D
simulation you can see all the cells. Using it is mentioned later in the manual.

For more information about the window, including the controls you can use to manipulate the renderer
display, as well as the clipping plane, please see the chapter on this window later in the manual.

When you are done watching the simulation, you can close the window to return to the editor. The
replay file you chose earlier will contain the data you generated, and can be watched again by selecting
'Replay Simulation...' from the file menu.

19

CS407 - Group Project: Cellulate User Manual

Null Name Exception

5 Using Cellulate

This section will give more detailed information on accomplishing a task using cellulate, as well as
providing labelled screenshots to show you what the different buttons and features are.

5.1 Editing a Simulation

The simulation editing window is the window you will probably see most of. It allows you to edit a
simulation, run a simulation you have created, or edit the application's preferences. See later sections
for information on these tasks.

5.1.1 The 'Simulation Properties' Pane

This pane is used for editing general properties of a simulation. It should ideally be completed before
moving on to other tabs; you must have defined at least one variable before you can switch to a
different tab.

Figure 19 : The simulation properties pane

1. The name of the simulation. This is optional. This does not affect the simulation itself, but can be

useful for labelling and describing the simulation.

20

CS407 - Group Project: Cellulate User Manual

Null Name Exception

2. The simulation description. As with the name, this is optional, but can help describe what a
simulation is supposed to model.

3. The size of the simulation grid in the x-dimension. Changing any sizing attributes of the simulation
will cause the initial states to be reset. Increasing the dimensions will increase the time the
simulation takes to run, and the amount of space it takes to store the result.

4. The y-size of the grid.
5. The z-size of the grid. You may want to make this '1' if you want to run a 2D cellular automata.
6. Whether to wrap cells around the x dimension. If this is selected, cells on the edges of the x axis

(which have their x coordinate as 0, for example) will have the corresponding cell on the other
side of the grid as a neighbour. This will effectively mean the cells wrap around, and cells on one
edge of the grid affect cells on the opposite edge.

7. Wrapping for cells in the y dimension.
8. Wrapping for cells in the z dimension. If you're running a 2D cellular automata, you will need to

turn this off as otherwise a cell would have itself as a neighbour. This would cause interesting
things to happen.

9. The number of iterations the simulation should show. The first iteration is the set of initial states
you define. Iterations after that will be calculated by cellulate based on the specified rules. More
iterations will take longer to run, and require more storage space.

10. The neighbourhood size. This is the number of cells each cell will have as a neighbour. With a
neighbourhood size of 1, every cell a distance of one away (i.e. touching the cell) will be
considered a neighbour - this is 26 cells. With a size of 2, cells a distance of 2 away will be
neighbours - this is the closest 124 cells. Increasing this will increase the amount of network traffic
and potentially the time to run the simulation. On the other hand, a cell can only refer to other
cells inside its neighbourhood. If you try to refer to cells outside it, the results are undefined.

11. This is a list of variables a cell may have. Scripts may refer to these variables in the current cell, or
any of its neighbours. They may also set the variable in the current cell only. Try and minimise the
number of variables you use, and their size; using more variables than required can slow down the
simulation, as well as requiring a lot more space to store.

12. This button allows you to modify the cell variable you have selected in the list above. See the
section later for a description of the window that appears when you push this button.

13. This will remove the currently selected variable.
14. This will allow you to add a new variable.

5.1.2 The 'Appearance' Pane

This pane allows you to set the conditions for which a cell should have a certain colour. Cellulate will
look through the list of colours you have defined in this pane. When it matches one, the cell will be
coloured according to that rule. If no matching rule is found, the cell will be transparent (and not
shown).

Cellulate allows you to apply a gradient to a range of values of a variable. If the variable is near to the
start of the range, the cell will be given a colour near the start of the colour range you specify. If it is
near the end, the colour will be closer to the end of the colour range.

If more than one colour matches, the first matching rule is the one that is applied.

21

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 20 : Appearance pane

1. This shows the defined colouring rules. The variable the rule applies to, the range of values it

applies to (if applicable; if it is just a single value, it will show it as '1..1') and the colour or
gradient is shown in this box.

2. This allows you to modify the selected colouring rule.
3. This will remove the selected colouring rule.
4. This will show you a window for adding a new colouring rule to the list.

22

CS407 - Group Project: Cellulate User Manual

Null Name Exception

5.1.3 The 'Script' Pane

The script pane allows you to create a script for each cell in a subset of C++. The script you enter here
will be sent to every node and compiled for maximum speed. For more information, please see the
later chapter on scripting.

Figure 21 : The script editor pane

1. This is the C++ script that will be sent to the nodes for running.
2. This button sends the script to one node, to test the syntax and that it compiles properly. If

compilation fails, the error message the node received from the compiler will be shown in a
window, otherwise it will tell you that compilation succeeded.

23

CS407 - Group Project: Cellulate User Manual

Null Name Exception

5.1.4 The 'Initial Cell States' Pane

This pane allows you to define the initial states of cells in the simulation. Future iterations will be based
on this initial 'seed' iteration. You can edit a cell by double-clicking it, and then changing the variables
for that cell in the property list window to the side.

For a more comprehensive guide to manipulating the renderer, please see the appropriate section later
in this manual.

Figure 22 : The initial state editor pane

1. This section of the inspector shows the different cell variables the selected cell has. They can be

edited by changing the values. The changes to colouring (if any apply) should be immediately
visible in the states window.

2. This section of the inspector shows the x, y and z co-ordinates of the selected cell.
3. This is a selected cell (notice the white outline). Cells can be selected by double-clicking on them.

24

CS407 - Group Project: Cellulate User Manual

Null Name Exception

4. This is a normal cell. It is coloured pink because a colouring rule matched a variable in the cell.
5. This is the select plane. Normally, a cell with no interesting attributes set would not be visible and

hence not selectable. When the select plane is shown, you can double-click on it, and the
corresponding invisible cell will become selected. This allows you to edit variables in invisible cells.
The select plane can be moved using the '+' and '-' keys. Double-right-clicking will change its
orientation.

5.1.5 Editing a Variable

This window will appear when you choose to edit or create a cell variable. A variable can be one of the
following types:

• A boolean: Either True (1) or False (0)
• A tiny integer: An integer number ranging from 0 to 15
• A small integer: An integer number ranging from -128 to 127
• A medium integer: An integer number ranging from -32768 to +32767
• A large integer: An integer number ranging from -2147483648 to 2147483647. This type should

be avoided unless really necessary, since it requires a lot of storage space.
• A floating-point number. This uses the same amount of space as a large integer.

The large variety of types is provided to allow you to minimise the space a cell's variables take up.

Figure 23 : The variable editing window

1. This is the name of the variable. The name is restricted to the characters a-z, A-Z, and 0-9. You

will be warned if you cannot use the name you enter.
2. The type of the variable. Select the smallest size you can here to minimise the overall size of a cell

and reduce the simulation's storage requirements.
3. Exit the window, losing any changes you made.
4. Close the window, saving changes.

5.1.6 Editing a Colouring Rule

The colouring window allows you to edit or create a rule to specify how cells should be coloured. Most
variables can either be coloured if they match a single variable (in which case, you only need to choose
one colour), or when they fall within a range (in which case you will need to choose an end colour as
well). Rules for boolean variables cannot be defined as a range, and rules for floating-point variables
cannot be a single value.

Figure 24 : The colouring rule editor window

25

CS407 - Group Project: Cellulate User Manual

Null Name Exception

1. Select the variable the rule should apply to.
2. If you want the rule to apply only for a single value, choose this option. This option is disabled

when the variable is floating-point, since it would rarely, if ever, match one.
3. If you want a range of values for the rule, check this box. This is unavailable for booleans, since

they can only take two values and you would never want to define a range for one.
4. This box shows the lower bound value to match. If you are not defining a range, this will also be

the upper bound.
5. This box defines the upper bound of the rule. It is only applicable if you are defining a range.
6. This box specifies the lower bound colour.
7. This defines the upper bound colour. Again, it is only applicable if a range is being defined.
8. Exit the window, losing any changes you made.
9. Close the window, saving changes.

5.2 Starting a Simulation

When you have finished editing your simulation, you can start running it. To do this, choose 'Run
Simulation...' from the Tools menu on the Editor window. If no node is connected, you will be presented
with the option of starting one locally. This is not recommended for large simulations, but can be useful
for quickly testing a small one. At least one node must be connected before a simulation can start.

A window will then appear allowing you to confirm your decision, and to choose where to save the
replay file to.

Figure 25 : The run simulation confirmation box

1. The name of the simulation you are about to run.
2. The description of the simulation.
3. The number of nodes you are about to run this simulation on. If this is wrong, press cancel,

connect or disconnect nodes, and try again.
4. The path and filename you will be saving the replay file to. Change this using the button next to it.
5. Click this to change the replay file location. Type a name for the file in the window that appears,

and choose a location to save it to.
6. Exit the window without running the simulation.
7. Save the simulation, and start running.

When you choose to save and run, the script you entered will be sent to all connected nodes, which will
then attempt to compile it. If any problems are encountered, you will be told about them. Otherwise,
the simulation should begin and the simulation display window should appear.

26

CS407 - Group Project: Cellulate User Manual

Null Name Exception

5.3 Replaying an Existing simulation

To replay a simulation, you must have the corresponding simulation open in the editor window
(Cellulate uses this to determine the variables and colours to display). You can then choose 'Replay
Previous Simulation...' from the File menu on the editor window, and choose the .simReplay file in the
file dialog that appears.

The simulation display window should appear, allowing you to move backwards and forwards through
the simulation and view cell variable values. When you are done, you can close the window to return to
the editor.

5.4 Changing Application Preferences

Various application settings can be changed by choosing 'Application Settings...' from the Tools menu
(or 'Preferences...' from the Application menu under OS X). Most changes will take effect when the
program is restarted.

Figure 26 : The application settings window

1. This is the port that the Cellulate application listens for connections on. Changing this is useful if

the port is already in use, or blocked by a firewall. This change will take effect when you restart the
program. You will also need to pass the new port to Cellunet as a command-line parameter.

2. When using the clipping plane to view cells in the middle of a cluster, Cellulate will, by default,
faintly render the clipped cells to give you an idea of the overall shape of the group. This option
allows you to turn this off (i.e. hide the cells completely) which can be used to improve display
performance.

3. If you are playing the simulation reasonably quickly, the frame may advance before the previous
frame has finished rendering in its entirety. This option forces Cellulate to wait until the rendering
completes before changing frame.

4. This is the top colour of the background gradient.
5. This is the bottom background gradient colour.
6. This controls playback speed: the delay before frames will advance when the play button is pressed

on the display window.
7. This will affect transition animation speed, such as zooming in and out, and orbiting. Animations

can be turned off completely by moving this slider all the way to the left.
8. Exit the window, losing any changes you made.
9. Close the window, saving changes.

27

CS407 - Group Project: Cellulate User Manual

Null Name Exception

5.5 Viewing a Simulation

When you are viewing a simulation that is in the process of being rendered, or replaying a simulation
that has been recorded, you will be presented with a window like the one shown below.

Figure 27 : The simulation viewer window

1. This is the renderer. It shows a 3D representation of the current state of the model. It can be

rotated (using the left mouse button), panned (using the right mouse button) and zoomed in and
out (using the scroll wheel). See the next section for more detailed controls.

2. This is the mass of cells. The screenshot in this example is from the 3D Game of Life, and the cells
have been generated based on the rules and a small initial state. The values of a cell's variables
can be viewed by double-clicking it; information about the selected cell is shown in the floating
inspector window.

3. This is the clipping plane. It can be difficult, if not impossible, to view the middle of a group of cells
if (as in the Game of Life), they form a structure like a ball or cube. The clipping plane allows you
to hide all cells on one side of it, letting you view cells in the middle. It can be toggled on and off
using the 'h' key, moved left and right using the '+' and '-' keys (or '[' and ']', or alt+scroll wheel),

28

CS407 - Group Project: Cellulate User Manual

Null Name Exception

the orientation can be changed by double-right-clicking, and the side that is hidden flipped using
the 'j' key. These commands are summarised in the next section.

4. This shows variables of the currently selected cells, together with their values. They cannot be
edited when viewing the simulation.

5. This shows the x, y and z co-ordinates of the currently selected cell.
6. This bar shows both how far through calculating the simulation Cellulate is, and the position of the

frame you are viewing in relation to the entire simulation.
7. The green line inside the bar represents how far through calculating the simulation Cellulate is.
8. The handle shows you what frame you are looking at in relation to the entire simulation, and allows

you to move around the simulation. Either drag it to where you want to look at, or click anywhere
on the green bar to jump straight to that point.

9. This button moves back to the first iteration.
10. This button moves back one iteration.
11. This button toggles the simulation between playing and paused. You can adjust the delay before

Cellulate advances to the next frame using the slider in the application settings window.
12. This button moves forward one iteration.
13. This button moves to the last available iteration (i.e. to the end of the green line).
14. This bar shows the current status of Cellulate. If Cellulate is calculating, it will give you a rough

approximation of the amount of time left until the simulation has finished.

This window also lets you pause or stop the simulation calculation (if it is still happening). You can do
this by choosing 'Pause Simulation...' or 'Stop Simulation' from the Simulation menu. When it is paused,
it can be resumed in a similar way.

If the window is closed, Cellulate saves the data generated so far in the appropriate simReplay file. This
can then be viewed at a later date.

5.6 Controlling the Renderer

The renderer is used in two main places: to define initial states, and to view the results of rendering. In
both cases, it works in mostly the same way.

5.6.1 Controlling the Camera

Arguably the most important aspect of using the renderer is camera control. This allows you to rotate
to see previously hidden cells, zoom in to see fine detail, and zoom out to get a broader view.

• To zoom in and out, use the mouse scroll wheel, or the 'Page Up'/'Page Down' Keys.
• To rotate the camera, click and drag with the left mouse button.
• To move the simulation to the left, right, up and down, click the right mouse button and drag. You

can also use the 'a', 'd', 'r' and 'f' keys.
• To make the camera automatically orbit the simulation, press the 'o' key. To stop it, move the

camera or press 'o' again.
• Holding down shift while zooming will allow you to zoom more quickly.

5.6.2 When Defining States

When you are editing the initial states, the renderer gains a few extra commands to make this task
easier. In particular, it includes keys for manipulating the select plane, used to select invisible cells
(cells with no colour rules defined that would otherwise be unselectable). When selecting cells by
double-clicking, if there is no cell at the point you clicked, Cellulate will instead select the empty cell on
the select plane at that point.

• To move the select plane, use the '+'/'-' or '['/']' keys, or press 'Alt' while using the scroll wheel.
• To change the orientation, double-right-click.

5.6.3 When Viewing Simulations

When viewing a simulation, the renderer includes an extra clipping plane, hidden by default. This plane
can be used to hide all the cells behind or in front of it. This is useful for viewing a cross-section of a
simulation; it lets you see cells in the inside of a group you would otherwise not be able to view.

• To toggle the clipping plane on and off, press the 'h' key.
• To move the clipping plane up and down, press the '+'/'-' or '['/']' keys, or press 'Alt' while using

the scroll wheel.
• To change the orientation, double-right-click.

29

CS407 - Group Project: Cellulate User Manual

Null Name Exception

• To change the side of the clipping plane that is visible, press the 'j' key.

5.7 The Node (Cellunet)

The node is used by Cellulate to run the simulation. There needs to be at least one connected in order
to run a simulation, but Cellulate will try and use as many as are available.

Once a node is connected to the Cellulate application, it will remain connected until you either terminate
it (Ctrl-C, or through the node management window), or the Cellulate application exits. It will
participate in whatever simulations are run during this time.

The node supports various configuration options that can be passed as command-line parameters. The
most commonly-used are:

• -a [IP address]: Specifies the IP address to try to connect to. Defaults to 127.0.0.1 (the current

machine).
• -p [Port]: The port number to try and connect on. This should match the one specified in the

Cellulate application, and defaults to 9000.
• -r: Keep retrying the connection until it succeeds. Useful if the Cellulate application isn't running

yet. This can be stopped using 'Ctrl-C'.
• -y [0|1|2]: The priority to run the node at. 0 is below average (only idle CPU cycles) and is

default, 1 is normal priority, and 2 will run it at a higher priority. Note that this option may require
administrative privileges.

• -h: Shows help in the form of a summary of all the command-line options, then exits.

5.7.1 Altering the Build Configuration

You may need to edit the command line the node uses to compile scripts. The configure script will
guess the correct command line to use, together with appropriate paths, and most of the time it should
do this correctly. If the guessed values are inappropriate for your system, you can edit it manually. The
command line it uses to compile can be found in make.cfg, which is in either
$PREFIX/share/cellulate/script, or the script directory in the same folder as the cellunet executable.
Note that the location of the script files should not be changed unless you know what you are doing;
the node expects to find the script and compiled library in the locations initially set.

5.8 Managing Connected Nodes

It is possible to view a list of nodes that are connected, as well as disconnect unwanted ones from the
Cellulate application. To do this, choose 'Show Connected Nodes...' from the Tools menu of the editor.

30

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Figure 28 : The connected nodes management window

1. This shows a list of all connected nodes' IP addresses.
2. To disconnect a node, select it in the list above, and press this 'Disconnect' button. The node will be

unceremoniously dumped from the exciting distributed network you've formed.
3. When you're done disconnecting things, you can close the window with this button.

31

CS407 - Group Project: Cellulate User Manual

Null Name Exception

6 Scripts

6.1 What is a Script?

The script is the method by which the user defines the rules of the simulation. It is written from the
perspective of a single cell which is being updated. The aim is that by the end of the script you will have
defined each different case for how you want a cell to be set.

It is written as a fragment of programming code. The script uses the syntax of the language C++ (since
it is basically a subset of C++). It is therefore very similar to C and other high-level languages such as
Java and Pascal, so users with any basic programming experience of such languages should find script-
writing very straightforward.

6.2 Using Script Functions

A large amount of Cellular Automata (CA) can be created using these basic functions*:

• Set(): Sets the state of a variable in the current cell
• Get(): Gets the state of a variable in the current cell
• GetNeighbour(): Gets the state of a variable in a neighbouring cell

*Note: The parameters to these functions are omitted for clarity

For instance the well-known Conway's Game of Life CA can be written using just these three methods.
For ease of use, a number of other methods have been provided to help the user write scripts faster
and more efficiently.

A basic example of such a method is 'NumNeighbours()' which can check all neighbouring cells within
the neighbourhood, see if they match some given value, and return the number of them that do. The
need to do this is common in 'totalistic' cellular automata such as the Game of Life.

A complete list of available functions (for the current version) is given in the Functions Reference
section at the end of the user manual.

6.3 Writing a Script - An Example

The following is an example rule script, using such methods to create the simulation rules. The example
also shows the use of standard C++ syntax. (Note the 'if-else statements' and variable assignments, as in
C++.)

/* Conway's Game of Life */

/* Constants for the life rules */

int r1 = 3;

int r2 = 4;

int r3 = 3;

int r4 = 2;

/* Count the number of neighbouring cells that are 'alive' */

int numNeighbours = NumNeighbours("cellalive",true);

/* Based on numNeighbours work out new cell state */

/* If not too many or too few, set this cell to alive */

if (numNeighbours >= r1 && numNeighbours <= r2) {

 Set("cellalive",true);

/* If too many (overcrowding) or too few (loneliness) this cell dies */

} else if (numNeighbours > r3 || numNeighbours < r4) {

 Set("cellalive",false);

/* Otherwise the state is maintained from the previous iteration */

32

CS407 - Group Project: Cellulate User Manual

Null Name Exception

} else {

 CopyCell();

}

As the comments say this script will run a particular case of Conway's Game of Life (GoL) in 3D. Now we
will step through this script and see what is going on. If you wish to copy this example you will need to
first set up a cell variable called "cellalive" of type boolean. Let us then begin:

/* Constants for the life rules */

int r1 = 3;

int r2 = 4;

int r3 = 3;

int r4 = 2;

Here, we have declared some integer variables and assigned values to them. These values will dictate how
many 'live' neighbouring cells are required for the cell to be 'born', 'survive' or 'die'. This step is not
essential, the values could be put into the if statements later, but this means we can easily come back to
the simulation and change these values to see some different behaviour. (Note that variations of GoL are
sometimes formally distinguished between by using these numbers - this is gol(3432)_3d).

/* Count the number of neighbouring cells that are 'alive' */

int numNeighbours = NumNeighbours("cellalive",true);

Now, we are using a script function that is provided for us called NumNeighbours(). This function checks
every single neighbour (in 3D there are 26) and counts how many of these have the value we specify for
the variable we specify. In this case (NumNeighbours("cellalive",true)) we are checking how many have
their variable called "cellalive" set to true (i.e we want to know how many cells around us are 'alive'). We
assign the result of the function call to a variable so we only need to call it once in the script.

/* Based on numNeighbours work out new cell state */

/* If not too many or too few, set this cell to alive */

if (numNeighbours >= r1 && numNeighbours <= r2) {

 Set("cellalive",true);

Now we are going to work out how to set the current cell based on this value 'numNeighbours'. We are
comparing it to the values of the variable r1 - r4 we assigned before.

Firstly, we want the cell to be set to 'alive', by setting our "cellalive" variable to true (Set("cellalive",true)
) if the number of neighbours is between our values for r1 and r2 inclusive. We are saying a cell is 'born' if
it has this number of neighbours.

/* If too many (overcrowding) or too few (loneliness) this cell dies */

} else if (numNeighbours > r3 || numNeighbours < r4) {

 Set("cellalive",false);

33

CS407 - Group Project: Cellulate User Manual

Null Name Exception

Now, we want to set the cell to 'die', by setting our "cellalive" variable to false (Set("cellalive",false)) if
the number of neighbours is greater than the value of r3 (in GoL we say the cell is 'overcrowded') or less
than the value of r4 (the cell is 'lonely').

/* Otherwise the state is maintained from the previous iteration */

} else {

 CopyCell();

}

Finally, we want to set the cell to 'stay as it is' if none of these conditions are true, so we put this within
the else statement and we use the method CopyCell(). CopyCell() basically means copy the entire cell's
state exactly as it was in the previous iteration. If our cell has lots of variables, it would preserve all of
these.

Now your script is ready so set some initial states, make sure you have set up the variable "cellalive" and
some appearance properties and you are ready to run your simulation!

If you want to try out some of the other script functions, refer to the Function Reference section. Also
looking at some of the other simulations in the examples directory will help you to see how they are used.

6.4 Advanced Use - Maths Functions

The user can access a number of standard C maths functions from the 'cmath' libary.

Warning: This is not particularly advisable for performance reasons since it can slow down simulations
considerably. But users are free to do this if they wish. For further information please refer to a C Libary
reference (http://www.cplusplus.com/reference/clibrary/cmath/). Available methods include:

• pow()
• sqrt()
• rand()
• sin()
• rand()

Note that a random number function 'Random' is provided (see function guide), but if users wish to use
the cmath function rand(), they may. rand() is already seeded (outside of the main loop) sufficiently
well that properly random results should occur with each simulation run. There is therefore no need to
use the seeding function srand() as well.

6.5 Non-recommended Use

It is advisable not to use certain C++ methods and keywords such as:

• The new or delete keywords. (If you do, please be very careful!).
• Memory allocation methods such as malloc().
• Use of sub-functions - this may work but is not recommended.
• The 'class' keyword to declare classes within scripts - This will not work.

6.6 Error Feedback

If your script contains an error when you attempt to run the simulation, the error will be reported in a
dialog box. You can also check the script before attempting to run the simulation by pressing the 'Check
Syntax' button.

34

CS407 - Group Project: Cellulate User Manual

Null Name Exception

6.7 FAQ - Common Problems

1. I do not update a cell and it disappears, why?

If you do not specify what a cell should do, each of the cell's variables will return to their default
values (0 for integers, false for boolean, 0.0 for floating-point). If you want a cell to 'stay the same'
as in the previous iteration, use the function CopyCell() (see function reference section).

2. I do not understand the error feedback.

Note that the feedback you are given is directly from the compiler, so error messages may be
confusing if you are not used to C++ compiler output. The line number you are directed to for the
first error is normally enough of an indicator to spot the error. If you still cannot locate the error,
you can try Googling the output error (minus the line number etc) to find what it means.

3. I call Set() and then Get() which doesn't return the value I just Set!

Get() returns the state of a cell variable from the previous iteration. Set() defines what state the
cell variable 'will be set to' in the current iteration. Therefore you cannot Get a value you have Set
previously in the script.

35

CS407 - Group Project: Cellulate User Manual

Null Name Exception

7 Troubleshooting

7.1 The node can't connect to the client

This is most likely caused by the port the node is trying to connect to being blocked.

• Firstly, check the Cellulate application is running. If it isn't, start it.
• Failing that, check the port isn't protected by a firewall.
• Check the port the application is listening on (as specified in the settings window) is the same as

that the node is trying to connect to (9000 by default, but can be changed with the '-p' option on
the command line, see Cellunet documentation for further information).

• Check that the node and Cellulate applications are the same version. Try re-compiling or re-
installing if in doubt.

7.2 2D Cellular Automata don't work properly

• This is most likely because you forgot to turn off wrapping for the dimension you specified as being
only one cell wide. If you haven't done this, every cell will have itself as a neighbour, and the
simulation may produce unexpected results. You can toggle this in the 'Simulation Properties' tab of
the editor window.

7.3 Cells are not coloured properly

The most likely reason for this is that the colouring rules are not being applied to the cell as you had
intended.

• If a cell does not have any rules that apply to it, it will be invisible. Ensure there is a rule that

matches the desired cell variable.
• If you specify a range, you will need to specify one colour that corresponds to the start of the

range, and one that corresponds to the end of the range. Cellulate will calculate the colour for the
cell depending on where it lies in that range; it is unlikely to be exactly either of the two colours
you specified.

• If several rules apply to one cell, the first one that matches is the one that has an effect. Ensure
there is only one colouring rule that matches the problematic cell.

7.4 I can't run my simulation

• Ensure at least one node is connected. Cellulate does not run the simulation itself; instead, it farms
the processing out to every connected node. The application should offer to start one if you try
running with no nodes available, but it is recommended you manuallly start a node to be sure.

• Ensure the script you entered is correct. You should get a dialog box with the error if the node was
unable to compile your script due to a syntax error; check your code and correct any problems this
window highlights. You may also want to refer to the scripting portion of the manual for more
information.

• The node may not be able to find the C++ compiler. Check the make.cfg file and ensure the correct
compiler and options are specified; see section 5.7.1 for more information.

7.5 Cells do not seem to have the right values

• A cell must have a value set each iteration; values do not 'carry over' from previous iterations. If
you want to make a copy of the previous cell state without changing anything, you will need to use
the CopyCell() method; see section x.x.x for more information.

• It is possible there is a logic error in your script; double-check it to be sure everything works as it
should.

7.6 I get permission errors when trying to run a script

• This may be because you do not have permission to execute files on the partition Cellulate is
compiling to (/tmp on Linux). You will need to enable execution for the script dynamic library that
the node will try to create and run.

36

CS407 - Group Project: Cellulate User Manual

Null Name Exception

7.7 The simulation replay does not relate to the simulation

• This problem may be caused by loading the wrong .sim file. You need to open the original
simulation file before starting the replay.

• Cellulate may have run out of disk space when saving the file. This will result in a corrupt replay
file.

7.8 All the cells are gray

• The renderer may be updating the cells. They will be replaced by more up-to-date cells when the
render gets around to it.

• If they are transparent, then the clipping plane is probably turned on. This is used to hide cells
behind a movable plane, allowing you to see what's in a ball of cells. To turn it off, press 'h'.

7.9 Help! I'm lost and I don't know what I'm seeing!

• In Cellulate, press 'c'. This will reset the camera to the original position.

37

CS407 - Group Project: Cellulate User Manual

Null Name Exception

8 Function Reference

The following functions are available to the user:

8.1 Basic Functions

Set(name, value)
 Set value of named cell variable to value specified

value Get(name)

Get value of named cell variable

CopyCell()

Copy cell state from previous iteration (cell 'stays the same' as previous iteration)

SetToDefault()

Set current cell's variables to default/empty values - optimises processing/rendering

8.2 Neighbours

Note that where required, 'relX, relY, relZ' are the relative coordinates used to specify a neighbouring
cell (e.g. 1,0,0 is the neighbouring cell in the positive x-direction).

value GetNeighbour(name, relX, relY, relZ)

Get the value of a named variable of a specified neighbour.

CopyNeighbour(relX, relY, relZ)

Copy cell state of a neighbour to own state - i.e. the cell 'becomes its neighbour'

value SumNeighbours(name)

Sum all values of the the named variable state for every neighbour.

int NumNeighbours(name, value)

Number of neighbouring cells within the neighbourhood whose value of the named variable is
EQUAL TO the value specified

int NumNeighboursGT(name, value)

Number of neighbouring cells whose value of the named variable is GREATER THAN the value
specified

int NumNeighboursLT(name, value)

Number of neighbouring cells whose value of the named variable is LESS THAN the value specified

int NumNeighboursGTE(name, value)
Number of neighbouring cells whose value of the named variable is GREATER THAN OR EQUAL TO
the value specified

int NumNeighboursLTE(name, value)

NumNeighboursLTE - Number of neighbouring cells whose value of the named variable is LESS
THAN OR EQUAL TO the value specified

8.2.1 Other

Increase(name, value)
Decrease(name, value)

Assuming the named variable is of numerical type, increase or decrease by the value specified.

int Random(highest,lowest)
Returns a random number (integer) between highest and lowest (integer) values, inclusive.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 800
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

